Computational modeling of flexoelectricity-A review

authored by
Xiaoying Zhuang, Binh Huy Nguyen, Subbiah Srivilliputtur Nanthakumar, Thai Quoc Tran, Naif Alajlan, Timon Rabczuk
Abstract

Electromechanical coupling devices have been playing an indispensable role in modern engineering. Particularly, flexoelectricity, an electromechanical coupling effect that involves strain gradients, has shown promising potential for future miniaturized electromechanical coupling devices. Therefore, simulation of flexoelectricity is necessary and inevitable. In this paper, we provide an overview of numerical procedures on modeling flexoelectricity. Specifically, we summarize a generalized formulation including the electrostatic stress tensor, which can be simplified to retrieve other formulations from the literature. We further show the weak and discretization forms of the boundary value problem for different numerical methods, including isogeometric analysis and mixed FEM. Several benchmark problems are presented to demonstrate the numerical implementation. The source code for the implementation can be utilized to analyze and develop more complex flexoelectric nano-devices.

Organisation(s)
Institute of Continuum Mechanics
External Organisation(s)
Ton Duc Thang University
King Saud University
Type
Review article
Journal
Energies
Volume
16
No. of pages
29
ISSN
1996-1073
Publication date
12.03.2020
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Renewable Energy, Sustainability and the Environment, Energy Engineering and Power Technology, Energy (miscellaneous), Control and Optimization, Electrical and Electronic Engineering
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.3390/en13061326 (Access: Open)
 

Details in the research portal "Research@Leibniz University"