Self-actuating fiber composites for auto-adaptive structures

authored by
N. Krstulovic-Opara, Peter Wriggers, L. Krstulovic-Opara
Abstract

This paper explores a novel approach in developing auto-adaptive, High-Performance Fiber Reinforced Concrete (HPFRC) based composite structures. This is achieved through the selective use of hybrid, self-actuating, Shape Memory Alloy (SMA) - HPFRC composites (SMA-HPFRCCs). Previous use of "passive" HPFRCs in seismic retrofit and new construction resulted in excellent seismic performance. By combining "passive" FRC fibers with continuous or discontinuous SMA fibers, self-actuating SMA-HPFRCCs that can change their stress-strain response during loading, were recently developed. The paper presents results of a numerical investigation on the use of such SMA-HPFRCCs to develop highly energy absorbing, replaceable, "fuse" zones that adjust their response to the level of overload, and thus optimize overall system response to the different levels of seismic excitations. A model-based simulation of the self-actuating HPFRC fuse response is presented first, followed by a discussion of its possible use in auto-adaptive structures. While in an actual auto-adaptive structure "triggering" of the desired self-actuating fuse behavior will require the use of "sensing" and control elements, the paper focuses only on the behavior of SMA-HPFRCC fuses.

Organisation(s)
Institute of Mechanics and Computational Mechanics
External Organisation(s)
North Carolina State University
Type
Conference contribution
Pages
416-425
No. of pages
10
Publication date
30.07.2001
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Computer Science Applications, Applied Mathematics, Electrical and Electronic Engineering
Electronic version(s)
https://doi.org/10.1117/12.434154 (Access: Closed)
 

Details in the research portal "Research@Leibniz University"