Modeling hydraulic cracks and inclusion interaction using XFEM
- authored by
- Bo He, Xiaoying Zhuang
- Abstract
In this study, we employ a coupled hydromechanical model to study the hydraulic fracture propagation path in porous media under the influence of existing pressurized voids. The hydraulic fracturing field study reveals that the existing natural voids and cracks alter the local properties of the porous media and influence the fracture propagation pattern. We incorporate these phenomena into the presented hydromechanical model, which is constructed from the mass and momentum balance equations for saturated porous media. The extended finite element method (XFEM) is applied for modeling the fluid flow through discrete cracks. The nonlinear hydromechanical equations are solved by the Newton–Raphson scheme with an implicit time integration procedure. Finally, numerical examples are presented and compared with experimental results. It is found that the fracture propagation path is significantly influenced by the existing pressurized voids and essential properties of the porous media; that is, the crack trends to propagate towards the pressurized voids.
- Organisation(s)
-
Institute of Continuum Mechanics
- External Organisation(s)
-
Tongji University
- Type
- Article
- Journal
- Underground Space (China)
- Volume
- 3
- Pages
- 218-228
- No. of pages
- 11
- ISSN
- 2096-2754
- Publication date
- 09.2018
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Civil and Structural Engineering, Geotechnical Engineering and Engineering Geology, Building and Construction
- Electronic version(s)
-
https://doi.org/10.1016/j.undsp.2018.04.005 (Access:
Open)
https://doi.org/10.15488/4895 (Access: Open)
-
Details in the research portal "Research@Leibniz University"