Showing results 1 -
9
out of 9
A new paradigm for the efficient inclusion of stochasticity in engineering simulations: Time-separated stochastic mechanics. /
Geisler, Hendrik; Erdogan, Cem; Nagel, Jan et al.
In:
Computational mechanics, Vol. 75, No. 1, 103366, 01.2025, p. 211–235.
Research output: Contribution to journal › Article › Research › peer review
More...
Efficient damage simulations under material uncertainties in a weakly intrusive implementation. /
Geisler, Hendrik; Baranger, Emmanuel
; Junker, Philipp.
In:
Journal of Mechanics of Materials and Structures, Vol. 20, 29.01.2025, p. 15-31.
Research output: Contribution to journal › Article › Research › peer review
More...
Efficient and accurate uncertainty quantification in engineering simulations using time-separated stochastic mechanics. /
Geisler, Hendrik; Junker, Philipp.
In:
Archive of applied mechanics, Vol. 94, No. 9, 09.2024, p. 2603-2617.
Research output: Contribution to journal › Article › Research › peer review
More...
Uncertainty quantification for viscoelastic composite materials using time-separated stochastic mechanics. /
Geisler, Hendrik; Junker, Philipp.
In:
Probabilistic Engineering Mechanics, Vol. 76, 103618, 04.2024.
Research output: Contribution to journal › Article › Research › peer review
More...
A new paradigm for the efficient inclusion of stochasticity in engineering simulations. /
Geisler, Hendrik; Erdogan, Cem; Nagel, Jan et al.
2023.
Research output: Working paper/Preprint › Preprint
More...
On the dynamic simulation of viscoelastic structures with random material properties using time‐separated stochastic mechanics. /
Geisler, Hendrik; Nagel, Jan
; Junker, Philipp.
In:
PAMM, 03.2023.
Research output: Contribution to journal › Article › Research › peer review
More...
Time-separated stochastic mechanics for the simulation of viscoelastic structures with local random material fluctuations. /
Geisler, Hendrik; Junker, Philipp.
In:
Computer Methods in Applied Mechanics and Engineering, Vol. 407, 115916, 15.03.2023.
Research output: Contribution to journal › Article › Research › peer review
More...
U
p -Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics. / Stender, Merten; Ohlsen, Jakob
; Geisler, Hendrik et al.
In:
Computational mechanics, Vol. 71, No. 6, 06.2023, p. 1227–1249.
Research output: Contribution to journal › Article › Research › peer review
More...
Simulation of the dynamic behavior of viscoelastic structures with random material parameters using time-separated stochastic mechanics. /
Geisler, Hendrik; Nagel, Jan
; Junker, Philipp.
In:
International Journal of Solids and Structures, Vol. 259, 112012, 25.12.2022.
Research output: Contribution to journal › Article › Research › peer review
More...