A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem

verfasst von
Timon Rabczuk, Huilong Ren, Xiaoying Zhuang
Abstract

A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations. Common differential operators as well as the variational forms are defined within the context of nonlocal operators. The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity, which is necessary for the eigenvalue analysis such as the waveguide problem. The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields. The governing equations are converted into nonlocal integral form. An hourglass energy functional is introduced for the elimination of zero-energy modes. Finally, the proposed method is validated by testing three classical benchmark problems.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Ton Duc Thang University
Bauhaus-Universität Weimar
Tongji University
Typ
Artikel
Journal
Computers, Materials and Continua
Band
59
Seiten
31-55
Anzahl der Seiten
25
ISSN
1546-2218
Publikationsdatum
2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Biomaterialien, Modellierung und Simulation, Werkstoffmechanik, Angewandte Informatik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.32604/cmc.2019.04567 (Zugang: Offen)
https://doi.org/10.15488/4766 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“