An energy-based material model for the simulation of shape memory alloys under complex boundary value problems

verfasst von
Cem Erdogan, Tobias Bode, Philipp Junker
Abstract

Shape memory alloys are remarkable ‘smart’ materials used in a broad spectrum of applications, ranging from aerospace to robotics, thanks to their unique thermomechanical coupling capabilities. Given the complex properties of shape memory alloys, which are largely influenced by thermal and mechanical loads, as well as their loading history, predicting their behavior can be challenging. Consequently, there exists a pronounced demand for an efficient material model to simulate the behavior of these alloys. This paper introduces a material model rooted in Hamilton's principle. The key advantages of the presented material model encompass a more accurate depiction of the internal variable evolution and heightened robustness. As such, the proposed material model signifies an advancement in the realistic and efficient simulation of shape memory alloys.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
429
ISSN
0045-7825
Publikationsdatum
01.09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Physik und Astronomie (insg.), Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2024.117134 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“