Feed-forward neural networks for failure mechanics problems

verfasst von
Fadi Aldakheel, Ramish Satari, Peter Wriggers
Abstract

This work addresses an efficient neural network (NN) representation for the phase-field modeling of isotropic brittle fracture. In recent years, data-driven approaches, such as neural networks, have become an active research field in mechanics. In this contribution, deep neural networks—in particular, the feed-forward neural network (FFNN)—are utilized directly for the development of the failure model. The verification and generalization of the trained models for elasticity as well as fracture behavior are investigated by several representative numerical examples under different loading conditions. As an outcome, promising results close to the exact solutions are produced.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
Applied Sciences
Band
11
Anzahl der Seiten
22
ISSN
2076-3417
Publikationsdatum
14.07.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Werkstoffwissenschaften (insg.), Instrumentierung, Ingenieurwesen (insg.), Prozesschemie und -technologie, Angewandte Informatik, Fließ- und Transferprozesse von Flüssigkeiten
Elektronische Version(en)
https://doi.org/10.3390/app11146483 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“