On constraint-conforming numerical discretizations in constitutive material modeling

verfasst von
T. Bode, M. Soleimani, C. Erdogan, K. Hackl, P. Wriggers, P. Junker
Abstract

For the modelling of complex materials, internal variables are usually introduced which characterize the microstructural state. Then, evolution equations describe the change of the internal variables due to varying external loading conditions. These equations can be derived, for instance, on the basis of variational principles. The consideration of characteristic observations, such as the preservation of the volume during a change in the microstructural state, can significantly improve the accuracy of the evolution equations. We present a Hamilton principle that provides a unique way to derive evolution equations that obey holonomic constraints and opens up new possibilities for their algorithmic treatment. This is demonstrated for isochoric finite plasticity and phase transformation based on Backward-Euler time discretization. The models presented are efficient and are characterized by simple implementation compared to the exponential map, for example, without suffering a loss of accuracy due to unfulfilled constraints.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
Computational mechanics
ISSN
0178-7675
Publikationsdatum
14.10.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computational Mathematics, Maschinenbau, Meerestechnik, Angewandte Mathematik, Numerische Mechanik, Theoretische Informatik und Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-024-02548-3 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“