Element differential method for contact problems with non-conforming contact discretization
- verfasst von
- Wei Long Fan, Xiao Wei Gao, Yong Tong Zheng, Bing Bing Xu, Hai Feng Peng
- Abstract
In this paper, a new strong-form numerical method, the element differential method (EDM) is employed to solve two- and three-dimensional contact problems without friction. When using EDM, one can obtain the system of equations by directly differentiating the shape functions of Lagrange isoparametric elements for characterizing physical variables and geometry without the variational principle or any integration. Non-uniform contact discretization is used to enhance contact conditions, which avoids performing identical discretization along the contact surfaces of two contact objects. Two methods for imposing contact constraints are proposed. One method imposes Neumann boundary conditions on the contact surface, whereas the other directly applies the contact constraints as collocation equations for the nodes within the contact zone. The accuracy of the two methods is similar, but the multi-point constraints method does not increase the degrees of freedom of the system equations during the iteration process. The results of four numerical examples have verified the accuracy of the proposed method.
- Organisationseinheit(en)
-
Institut für Kontinuumsmechanik
- Externe Organisation(en)
-
Dalian University of Technology
Nanchang University
- Typ
- Artikel
- Journal
- Engineering with computers
- Band
- 40
- Seiten
- 3195-3213
- Anzahl der Seiten
- 19
- ISSN
- 0177-0667
- Publikationsdatum
- 10.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Software, Modellierung und Simulation, Allgemeiner Maschinenbau, Angewandte Informatik
- Elektronische Version(en)
-
https://doi.org/10.1007/s00366-024-01963-7 (Zugang:
Geschlossen)