Element differential method for contact problems with non-conforming contact discretization

verfasst von
Wei Long Fan, Xiao Wei Gao, Yong Tong Zheng, Bing Bing Xu, Hai Feng Peng
Abstract

In this paper, a new strong-form numerical method, the element differential method (EDM) is employed to solve two- and three-dimensional contact problems without friction. When using EDM, one can obtain the system of equations by directly differentiating the shape functions of Lagrange isoparametric elements for characterizing physical variables and geometry without the variational principle or any integration. Non-uniform contact discretization is used to enhance contact conditions, which avoids performing identical discretization along the contact surfaces of two contact objects. Two methods for imposing contact constraints are proposed. One method imposes Neumann boundary conditions on the contact surface, whereas the other directly applies the contact constraints as collocation equations for the nodes within the contact zone. The accuracy of the two methods is similar, but the multi-point constraints method does not increase the degrees of freedom of the system equations during the iteration process. The results of four numerical examples have verified the accuracy of the proposed method.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Dalian University of Technology
Nanchang University
Typ
Artikel
Journal
Engineering with computers
Band
40
Seiten
3195-3213
Anzahl der Seiten
19
ISSN
0177-0667
Publikationsdatum
10.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Modellierung und Simulation, Allgemeiner Maschinenbau, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1007/s00366-024-01963-7 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“