A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations

verfasst von
C. Sansour, J. Sansour, Peter Wriggers
Abstract

The paper is concerned with a hybrid finite element formulation for the geometrically exact dynamics of rods with applications to chaotic motion. The rod theory is developed for in-plane motions using the direct approach where the rod is treated as a one-dimensional Cosserat line. Shear deformation is included in the formulation. Within the elements, a linear distribution of the kinematical fields is combined with a constant distribution of the normal and shear forces. For time integration, the mid-point rule is employed. Various numerical examples of chaotic motion of straight and initially curved rods are presented proving the powerfulness and applicability of the finite element formulation.

Externe Organisation(en)
Technische Universität Darmstadt
Typ
Artikel
Journal
Nonlinear dynamics
Band
11
Seiten
189-212
Anzahl der Seiten
24
ISSN
0924-090X
Publikationsdatum
10.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Luft- und Raumfahrttechnik, Meerestechnik, Maschinenbau, Angewandte Mathematik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1007/BF00045001 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“