A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations
- verfasst von
- C. Sansour, J. Sansour, Peter Wriggers
- Abstract
The paper is concerned with a hybrid finite element formulation for the geometrically exact dynamics of rods with applications to chaotic motion. The rod theory is developed for in-plane motions using the direct approach where the rod is treated as a one-dimensional Cosserat line. Shear deformation is included in the formulation. Within the elements, a linear distribution of the kinematical fields is combined with a constant distribution of the normal and shear forces. For time integration, the mid-point rule is employed. Various numerical examples of chaotic motion of straight and initially curved rods are presented proving the powerfulness and applicability of the finite element formulation.
- Externe Organisation(en)
-
Technische Universität Darmstadt
- Typ
- Artikel
- Journal
- Nonlinear dynamics
- Band
- 11
- Seiten
- 189-212
- Anzahl der Seiten
- 24
- ISSN
- 0924-090X
- Publikationsdatum
- 10.1996
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Steuerungs- und Systemtechnik, Luft- und Raumfahrttechnik, Meerestechnik, Maschinenbau, Angewandte Mathematik, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.1007/BF00045001 (Zugang:
Unbekannt)