The interior penalty virtual element method for the two-dimensional biharmonic eigenvalue problem

verfasst von
Jian Meng, Bing Bing Xu, Fang Su, Xu Qian
Abstract

The biharmonic eigenvalue problem is a fourth order eigenmodel appearing in many applications of the mechanics, fluid and inverse scattering theory. In this paper, we introduce the interior penalty virtual element method for the biharmonic eigenvalue problem in two dimensions. It preserves the symmetric positive-definiteness of the continuous problem and reduces the total number of required degrees of freedom. Considering standard assumptions on polygonal meshes, we prove the correct approximation of spectrum for the proposed virtual element scheme. Necessitated by supporting the convergence analysis, representative numerical examples are reported, including the optimal convergence on different meshes, the associate vibration and buckling problems with clamped, simply supported and Cahn–Hilliard boundary conditions, together with developing Serendipity version dropping the internal-to-element degrees of freedom.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
National University of Defense Technology
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
436
Anzahl der Seiten
20
ISSN
0045-7825
Publikationsdatum
01.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Allgemeine Physik und Astronomie, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2024.117685 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“