A software framework for probabilistic sensitivity analysis for computationally expensive models

verfasst von
Nam Vu-Bac, T. Lahmer, Xiaoying Zhuang, T. Nguyen-Thoi, Timon Rabczuk
Abstract

We provide a sensitivity analysis toolbox consisting of a set of Matlab functions that offer utilities for quantifying the influence of uncertain input parameters on uncertain model outputs. It allows the determination of the key input parameters of an output of interest. The results are based on a probability density function (PDF) provided for the input parameters. The toolbox for uncertainty and sensitivity analysis methods consists of three ingredients: (1) sampling method, (2) surrogate models, (3) sensitivity analysis (SA) method. Numerical studies based on analytical functions associated with noise and industrial data are performed to prove the usefulness and effectiveness of this study.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Bauhaus-Universität Weimar
Tongji University
Ton Duc Thang University
Typ
Artikel
Journal
Advances in Engineering Software
Band
100
Seiten
19-31
Anzahl der Seiten
13
ISSN
0965-9978
Publikationsdatum
22.06.2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Allgemeiner Maschinenbau
Elektronische Version(en)
https://doi.org/10.1016/j.advengsoft.2016.06.005 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“