A multiphysics-based artificial neural networks model for atherosclerosis

verfasst von
M. Soleimani, B. Dashtbozorg, M. Mirkhalaf, S. M. Mirkhalaf
Abstract

Atherosclerosis is a medical condition involving the hardening and/or thickening of arteries' walls. Mathematical multi-physics models have been developed to predict the development of atherosclerosis under different conditions. However, these models are typically computationally expensive. In this study, we used machine learning techniques, particularly artificial neural networks (ANN), to enhance the computational efficiency of these models. A database of multi-physics Finite Element Method (FEM) simulations was created and used for training and validating an ANN model. The model is capable of quick and accurate prediction of atherosclerosis development. A remarkable computational gain is obtained using the ANN model compared to the original FEM simulations.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Netherlands Cancer Institute
Queensland University of Technology
Göteborgs Universitet
Typ
Artikel
Journal
Heliyon
Band
9
ISSN
2405-8440
Publikationsdatum
07.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemein
Elektronische Version(en)
https://doi.org/10.1016/j.heliyon.2023.e17902 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“