Phase-field modeling of brittle fracture using an efficient virtual element scheme

verfasst von
Fadi Aldakheel, Blaž Hudobivnik, Ali Hussein, Peter Wriggers
Abstract

This work addresses an efficient low order virtual element method (VEM) for the phase-field modeling of isotropic brittle fracture. Virtual elements were introduced in the last decade and applied to various problems in solid mechanics. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modeling with constitutive terms rooted in fracture mechanics, see Miehe et al. [23] and Miehe et al. [29]. In the presented contribution, we propose a rigorous variational-based framework for the phase-field modeling of brittle fracture in elastic solids undergoing small strains. The key goal here, is the extension towards the recently developed virtual element formulation due to the flexible choice of nodes number in an element which can be changed easily during the simulation process, as outlined in Wriggers et al. [11] and Wriggers et al. [18]. To this end, the potential density is formulated in terms of suitable polynomial functions, instead of computing the unknown shape functions for complicated element geometries, e.g. arbitrary convex or concave polygonal elements. An important aspect of this work is the introduction of an incremental minimization principle, with a novel construction of the stabilization density for the coupled multi-field problem. On the computational side, a robust and efficient monolithic scheme is employed using the software tool ACEFEM program in the numerical implementation to compute the unknowns (displacement and crack phase-field), see Korelc and Wriggers [52]. The performance of the formulation is underlined by means of representative examples.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
341
Seiten
443-466
Anzahl der Seiten
24
ISSN
0045-7825
Publikationsdatum
01.11.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Allgemeine Physik und Astronomie, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2018.07.008 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“