An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems

verfasst von
P. S.B. Nigro, M. Anndif, Y. Teixeira, P. M. Pimenta, P. Wriggers
Abstract

Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Universidade de Sao Paulo
Typ
Artikel
Journal
Computational mechanics
Band
57
Seiten
537-554
Anzahl der Seiten
18
ISSN
0178-7675
Publikationsdatum
04.2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-015-1238-y (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“