Application of a Parallel Algebraic Multigrid Method for the Solution of Elastoplastic Shell Problems

verfasst von
S. Meynen, A. Boersma, Peter Wriggers
Abstract

The algebraic multigrid method (AMG) can be applied as a preconditioner for the conjugate gradient method. Since no special hierarchical mesh structure has to be specified, this method is very well suited for the implementation into a standard finite element program. A general concept for the parallelization of a finite element code to a parallel machine with distributed memory of the MIMD class is presented. Here, a non-overlapping domain decomposition is employed. A non-linear shell theory involving elastoplastic material behaviour of von Mises type with linear isotropic hardening is briefly introduced and a parallel algebraic multigrid method is derivated. As a numerical example we discuss the pinching of a cylinder undergoing large elastoplastic deformations. The performance of the solver is shown by using speed-up and scale-up investigation, as well as the influence of the problem size and the plasticity.

Externe Organisation(en)
Technische Universität Darmstadt
Typ
Artikel
Journal
Numerical Linear Algebra with Applications
Band
4
Seiten
223-238
Anzahl der Seiten
16
ISSN
1070-5325
Publikationsdatum
04.12.1998
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/(SICI)1099-1506(199705/06)4:3<223::AID-NLA111>3.0.CO;2-2 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“