Application of a Parallel Algebraic Multigrid Method for the Solution of Elastoplastic Shell Problems
- verfasst von
- S. Meynen, A. Boersma, Peter Wriggers
- Abstract
The algebraic multigrid method (AMG) can be applied as a preconditioner for the conjugate gradient method. Since no special hierarchical mesh structure has to be specified, this method is very well suited for the implementation into a standard finite element program. A general concept for the parallelization of a finite element code to a parallel machine with distributed memory of the MIMD class is presented. Here, a non-overlapping domain decomposition is employed. A non-linear shell theory involving elastoplastic material behaviour of von Mises type with linear isotropic hardening is briefly introduced and a parallel algebraic multigrid method is derivated. As a numerical example we discuss the pinching of a cylinder undergoing large elastoplastic deformations. The performance of the solver is shown by using speed-up and scale-up investigation, as well as the influence of the problem size and the plasticity.
- Externe Organisation(en)
-
Technische Universität Darmstadt
- Typ
- Artikel
- Journal
- Numerical Linear Algebra with Applications
- Band
- 4
- Seiten
- 223-238
- Anzahl der Seiten
- 16
- ISSN
- 1070-5325
- Publikationsdatum
- 04.12.1998
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1002/(SICI)1099-1506(199705/06)4:3<223::AID-NLA111>3.0.CO;2-2 (Zugang:
Unbekannt)