A nonlinear quadrilateral shell element with drilling degrees of freedom

verfasst von
F. Gruttmann, W. Wagner, Peter Wriggers
Abstract

A bending theory for thin shells undergoing finite deformations is presented, and its associated finite element model is described. The kinematic assumptions are of Reissner-Mindlin type. The formulation is based on the introduction of a mixed functional with independent in-plane rotation field and skew-symmetric part of membrane forces. The resulting Euler-Lagrangian equations yield the equilibrium of stress resultants and the couple resultant with respect to the surface normal. Furthermore, the equality of the independent rotation field with the displacement dependent rotation field is enforced. Hence, the symmetry of the stress resultants is fulfilled in a weak sence. Naturally, the development of a quadrilateral finite element includes drilling degrees of freedom. The displacement field is approximated using an Allman-type interpolation.

Externe Organisation(en)
Technische Universität Darmstadt
Typ
Artikel
Journal
Archive of applied mechanics
Band
62
Seiten
474-486
Anzahl der Seiten
13
ISSN
0939-1533
Publikationsdatum
07.1992
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Maschinenbau
Elektronische Version(en)
https://doi.org/10.1007/BF00810238 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“