An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity

Part 2: shells

verfasst von
E. M.B. Campello, P. M. Pimenta, P. Wriggers
Abstract

Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715-732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin with a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, allowing for an extremely simple update of the rotational variables within the scheme. The weak form is constructed via non-orthogonal projection, the time-collocation of which ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that general hyperelastic materials (and not only materials with quadratic potentials) are permitted in a totally consistent way. Spatial discretization is performed using the finite element method and the robust performance of the scheme is demonstrated by means of numerical examples.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Universidade de Sao Paulo
Typ
Artikel
Journal
Computational mechanics
Band
48
Seiten
195-211
Anzahl der Seiten
17
ISSN
0178-7675
Publikationsdatum
30.03.2011
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1007/s00466-011-0584-7 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“