Space-time variational material modeling

a new paradigm demonstrated for thermo-mechanically coupled wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage

verfasst von
Philipp Junker, Thomas Wick
Abstract

We formulate variational material modeling in a space-time context. The starting point is the description of the space-time cylinder and the definition of a thermodynamically consistent Hamilton functional which accounts for all boundary conditions on the cylinder surface. From the mechanical perspective, the Hamilton principle then yields thermo-mechanically coupled models by evaluation of the stationarity conditions for all thermodynamic state variables which are displacements, internal variables, and temperature. Exemplary, we investigate in this contribution elastic wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage. Therein, one key novel aspect are initial and end time velocity conditions for the wave equation, replacing classical initial conditions for the displacements and the velocities. The motivation is intensively discussed and illustrated with the help of a prototype numerical simulation. From the mathematical perspective, the space-time formulations are formulated within suitable function spaces and convex sets. The unified presentation merges engineering and applied mathematics due to their mutual interactions. Specifically, the chosen models are of high interest in many state-of-the art developments in modeling and we show the impact of this holistic physical description on space-time Galerkin finite element discretization schemes. Finally, we study a specific discrete realization and show that the resulting system using initial and end time conditions is well-posed.

Organisationseinheit(en)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Kontinuumsmechanik
Institut für Angewandte Mathematik
Typ
Artikel
Journal
Computational mechanics
Band
73
Seiten
365-402
Anzahl der Seiten
38
ISSN
0178-7675
Publikationsdatum
02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-023-02371-2 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“