Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads

verfasst von
Haifei Zhan, Gang Zhang, Xiaoying Zhuang, Rabczuk Timon, Yuantong Gu
Abstract

To ensure reliable performance and lifetime of electronics, effective and efficient heat removal is essential, which relies heavily on the high thermal conductivity of the packaging substrates and thermal interface materials (TIMs). Highly conductive fillers have been commonly applied to enhance the thermal conductivity of TIMs, while the enhancement effect has been significantly impeded by the interfacial thermal resistance. This work reveals that the new type of ultra-thin carbon nanomaterial – carbon nanothreads, possess a much smaller interfacial thermal resistance (3.1 ± 0.4 × 10−9 Km2/W) between each other compared with that of the (4,0) carbon nanotubes (8.8 ± 4.6 × 10−9 Km2/W). Similar as found for carbon nanotubes, the interfacial thermal resistance decreases when the interfacial crossing angle decreases or the contact area increases. Surprisingly, both compressive and stretching interfacial distance are found to enhance the interfacial thermal conductance. It is found that different carbon nanothreads exhibit an interfacial thermal conductance between 60 and 110 pW/K, which can be remarkably enhanced by introducing interfacial cross-linkers. Combining with the ultra-thin nature of carbon nanothreads, our work suggests that carbon nanothreads can be an excellent alternative nanofillers for polymer composites with enhanced thermal conductivity.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Queensland University of Technology
A-STAR
Bauhaus-Universität Weimar
Typ
Artikel
Journal
CARBON
Band
165
Seiten
216-224
Anzahl der Seiten
9
ISSN
0008-6223
Publikationsdatum
15.09.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Chemie, Allgemeine Materialwissenschaften
Elektronische Version(en)
https://eprints.qut.edu.au/201860/1/Carbon2020_Haifei.pdf (Zugang: Offen)
https://doi.org/10.1016/j.carbon.2020.04.065 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“