A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element

verfasst von
P. M. Pimenta, E. M.B. Campello, Peter Wriggers
Abstract

This work presents a fully nonlinear multi-parameter shell formulation together with a triangular shell finite element for the solution of static boundary value problems. Our approach accounts for thickness variation as additional nodal DOFs, using a director theory with a standard Reissner-Mindlin kinematical assumption. Finite rotations are exactly treated by the Euler-Rodrigues formula in a pure Lagrangean framework, and elastic constitutive equations are consistently derived from fully three-dimensional finite strain constitutive models. The corresponding 6-node triangular shell element is presented as a generalization of the T6-3i triangle introduced by the authors in [3].

Organisationseinheit(en)
Institut für Baumechanik und Numerische Mechanik
Externe Organisation(en)
Universidade de Sao Paulo
Typ
Artikel
Journal
Computational mechanics
Band
34
Seiten
181-193
Anzahl der Seiten
13
ISSN
0178-7675
Publikationsdatum
13.07.2004
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-004-0564-2 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“