The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches

verfasst von
Xiaoying Zhuang, Shuai Zhou
Abstract

Advances in machine learning (ML) methods are important in industrial engineering and attract great attention in recent years. However, a comprehensive comparative study of the most advanced ML algorithms is lacking. Six integrated ML approaches for the crack repairing capacity of the bacteria-based self-healing concrete are proposed and compared. Six ML algorithms, including the Support Vector Regression (SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), Artificial Neural Network (ANN), Bayesian Ridge Regression (BRR) and Kernel Ridge Regression (KRR), are adopted for the relationship modeling to predict crack closure percentage (CCP). Particle Swarm Optimization (PSO) is used for the hyper-parameters tuning. The importance of parameters is analyzed. It is demonstrated that integrated ML approaches have great potential to predict the CCP, and PSO is efficient in the hyper-parameter tuning. This research provides useful information for the design of the bacteria-based self-healing concrete and can contribute to the design in the rest of industrial engineering.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Ton Duc Thang University
Chongqing University
Typ
Artikel
Journal
Computers, Materials and Continua
Band
59
Seiten
57-77
Anzahl der Seiten
21
ISSN
1546-2218
Publikationsdatum
2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Biomaterialien, Modellierung und Simulation, Werkstoffmechanik, Angewandte Informatik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.32604/cmc.2019.04589 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“