The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches
- verfasst von
- Xiaoying Zhuang, Shuai Zhou
- Abstract
Advances in machine learning (ML) methods are important in industrial engineering and attract great attention in recent years. However, a comprehensive comparative study of the most advanced ML algorithms is lacking. Six integrated ML approaches for the crack repairing capacity of the bacteria-based self-healing concrete are proposed and compared. Six ML algorithms, including the Support Vector Regression (SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), Artificial Neural Network (ANN), Bayesian Ridge Regression (BRR) and Kernel Ridge Regression (KRR), are adopted for the relationship modeling to predict crack closure percentage (CCP). Particle Swarm Optimization (PSO) is used for the hyper-parameters tuning. The importance of parameters is analyzed. It is demonstrated that integrated ML approaches have great potential to predict the CCP, and PSO is efficient in the hyper-parameter tuning. This research provides useful information for the design of the bacteria-based self-healing concrete and can contribute to the design in the rest of industrial engineering.
- Organisationseinheit(en)
-
Institut für Kontinuumsmechanik
- Externe Organisation(en)
-
Ton Duc Thang University
Chongqing University
- Typ
- Artikel
- Journal
- Computers, Materials and Continua
- Band
- 59
- Seiten
- 57-77
- Anzahl der Seiten
- 21
- ISSN
- 1546-2218
- Publikationsdatum
- 2019
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Biomaterialien, Modellierung und Simulation, Werkstoffmechanik, Angewandte Informatik, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.32604/cmc.2019.04589 (Zugang:
Offen)