Meshless analysis of shear deformable shells

boundary and interface constraints

verfasst von
Jorge C. Costa, Paulo M. Pimenta, Peter Wriggers
Abstract

Meshless methods provide a highly continuous approximation field, convenient for thin structures like shells. Nevertheless, the lack of Kronecker Delta property makes the formulation of essential boundary conditions not straightforward, as the trial and test fields cannot be tailored to boundary values. Similar problem arise when different approximation regions must be joined, in a multi-region problem, such as kinks, folds or joints. This work presents three approaches to impose both kinematic conditions: the well-known Lagrange multiplier method, used since the beginning of the element free Galerkin method; a pure penalty approach; and the recently rediscovered alternative of Nitsche’s method. We use the discretization technique for thick Reissner–Mindlin shells and adapt the weak form as to separate displacement and rotational degrees of freedom and obtain suitable and separate stabilization parameters. This approach enables the modeling of discontinuous shells and local refinement on multi-region problems.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Universidade de Sao Paulo
Typ
Artikel
Journal
Computational mechanics
Band
57
Seiten
679-700
Anzahl der Seiten
22
ISSN
0178-7675
Publikationsdatum
04.2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-015-1253-z (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“