An adaptive model order reduction with Quasi-Newton method for nonlinear dynamical problems

verfasst von
P. S.B. Nigro, M. Anndif, Y. Teixeira, P. M. Pimenta, P. Wriggers
Abstract

Model Order Reduction (MOR) methods are extremely useful to reduce processing time, even nowadays, when parallel processing is possible in any personal computer. This work describes a method that combines Proper Orthogonal Decomposition (POD) and Ritz vectors to achieve an efficient Galerkin projection, which changes during nonlinear solving (online analysis). It is supported by a new adaptive strategy, which analyzes the error and the convergence rate for nonlinear dynamical problems. This model order reduction is assisted by a secant formulation which is updated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula to accelerate convergence in the reduced space, and a tangent formulation when correction of the reduced space is needed. Furthermore, this research shows that this adaptive strategy permits correction of the reduced model at low cost and small error.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Universidade de Sao Paulo
Typ
Artikel
Journal
International Journal for Numerical Methods in Engineering
Band
106
Seiten
740-759
Anzahl der Seiten
20
ISSN
0029-5981
Publikationsdatum
19.10.2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mathematik, Allgemeiner Maschinenbau, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/nme.5145 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“