An ALE method for penetration into sand utilizing optimization-based mesh motion

verfasst von
D. Aubram, F. Rackwitz, P. Wriggers, S. A. Savidis
Abstract

The numerical simulation of penetration into sand is one of the most challenging problems in computational geomechanics. The paper presents an arbitrary Lagrangian-Eulerian (ALE) finite element method for plane and axisymmetric quasi-static penetration into sand which overcomes the problems associated with the classical approaches. An operator-split is applied which breaks up solution of the governing equations over a time step into a Lagrangian step, a mesh motion step, and a transport step. A unique feature of the ALE method is an advanced hypoplastic rate constitutive equation to realistically predict stress and density changes within the material even at large deformations. In addition, an efficient optimization-based algorithm has been implemented to smooth out the non-convexly distorted mesh regions that occur below a penetrator. Applications to shallow penetration and pile penetration are given which make use of the developments.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Technische Universität Berlin
Ostbayerische Technische Hochschule Regensburg
Typ
Artikel
Journal
Computers and geotechnics
Band
65
Seiten
241-249
Anzahl der Seiten
9
ISSN
0266-352X
Publikationsdatum
15.01.2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Geotechnik und Ingenieurgeologie, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.compgeo.2014.12.012 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“