An interior-point algorithm for elastoplasticity

verfasst von
Kristian Krabbenhoft, A. V. Lyamin, S. W. Sloan, Peter Wriggers
Abstract

The problem of small-deformation, rate-independent elastoplasticity is treated using convex programming theory and algorithms. A finite-step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal-dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state-of-the-art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening.

Organisationseinheit(en)
Institut für Baumechanik und Numerische Mechanik
Externe Organisation(en)
University of Newcastle
Typ
Artikel
Journal
International Journal for Numerical Methods in Engineering
Band
69
Seiten
592-626
Anzahl der Seiten
35
ISSN
0029-5981
Publikationsdatum
05.06.2006
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mathematik, Ingenieurwesen (insg.), Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/nme.1771 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“