Cracking Elements Method for Simulating Complex Crack Growth

verfasst von
Zizheng Sun, Xiaoying Zhuang, Yiming Zhang
Abstract

The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasibrittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implicit representations of the cracks’ topology are needed. CEM does not need remeshing technique, cover algorithm, nodal enrichment or specific crack tracking strategies. The crack opening is condensed in local element, greatly reducing the coding efforts and simplifying the numerical procedure. This paper presents numerical simulations with CEM regarding several benchmark tests, the results of which further indicate the capability of CEM in capturing complex crack growths referring propagations of existed cracks as well as initiations of new cracks.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Hebei University of Technology
Tongji University
Typ
Artikel
Journal
Journal of Applied and Computational Mechanics
Band
5
Seiten
552-562
Anzahl der Seiten
11
Publikationsdatum
05.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Maschinenbau
Elektronische Version(en)
https://doi.org/10.22055/jacm.2018.27589.1418 (Zugang: Offen)
https://doi.org/10.15488/11227 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“