On the sensitivity of homogenized material responses at infinitesimal and finite strains

verfasst von
T. I. Zohdi, Peter Wriggers
Abstract

On a practical level, when computing macroscopic or homogenized mechanical responses of materials possessing heterogeneous irregular microstructure, one can only test finite-sized samples. The macroscopic responses computed from various equal finite-sized samples exhibit deviations from one another. Consequently, any use of such data afterwards contains a degree of uncertainty. For example, certain classes of finite deformation response functions such as compressible Neo-Hookean functions, compressible Mooney-Rivlin functions, and others, employ predetermined linear elastic coefficients in parts of their representations. Therefore, they will contain the mentioned uncertainties. In this work we study the magnitude of deviations between computed homogenized linearly elastic responses among equal finite sized, samples possessing random microstructure. Afterwards, the sensitivity of finite deformation response functions to such deviations is addressed. The primary result is that deviations of the responses in the infinitesimal range bound the resulting perturbed response in the finite deformation range from above.

Organisationseinheit(en)
Institut für Baumechanik und Numerische Mechanik
Typ
Artikel
Journal
Communications in Numerical Methods in Engineering
Band
16
Seiten
657-670
Anzahl der Seiten
14
ISSN
1069-8299
Publikationsdatum
18.08.2000
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Modellierung und Simulation, Allgemeiner Maschinenbau, Theoretische Informatik und Mathematik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/1099-0887(200009)16:9<657::AID-CNM365>3.0.CO;2-S (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“