3D multiscale crack propagation using the XFEM applied to a gas turbine blade
- verfasst von
- Matthias Holl, Timo Rogge, Stefan Loehnert, Peter Wriggers, Raimund Rolfes
- Abstract
This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the J -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.
- Organisationseinheit(en)
-
Institut für Kontinuumsmechanik
Institut für Statik und Dynamik
- Typ
- Artikel
- Journal
- Computational mechanics
- Band
- 53
- Seiten
- 173-188
- Anzahl der Seiten
- 16
- ISSN
- 0178-7675
- Publikationsdatum
- 18.07.2013
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1007/s00466-013-0900-5 (Zugang:
Unbekannt)