3D multiscale crack propagation using the XFEM applied to a gas turbine blade

verfasst von
Matthias Holl, Timo Rogge, Stefan Loehnert, Peter Wriggers, Raimund Rolfes
Abstract

This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the J -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Institut für Statik und Dynamik
Typ
Artikel
Journal
Computational mechanics
Band
53
Seiten
173-188
Anzahl der Seiten
16
ISSN
0178-7675
Publikationsdatum
18.07.2013
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-013-0900-5 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“