Error estimation for crack simulations using the XFEM

verfasst von
C. Prange, S. Loehnert, P. Wriggers
Abstract

The extended finite element method (XFEM) is by now well-established for crack calculations in linear elastic fracture mechanics. An advantage of this method is its discretization independence for crack simulations. Nevertheless, discretization errors occur when using the XFEM. In this paper, a simple recovery based error estimator for the discretization error in XFEM-calculations for cracks is presented. The method is based on the Zienkiewicz and Zhu error estimator. Enhanced smoothed stresses incorporating the discontinuities and singularities because of the cracks are recovered to enable the error estimation for arbitrary distributed cracks. This approach also allows the consideration of materials with generally inelastic behaviour. The enhanced stresses are computed by means of a least square fit problem. To assess the quality of the error estimator, global norms and the effectivity index for the global energy norm for examples with known analytical solutions are presented.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
International Journal for Numerical Methods in Engineering
Band
91
Seiten
1459-1474
Anzahl der Seiten
16
ISSN
0029-5981
Publikationsdatum
28.08.2012
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mathematik, Allgemeiner Maschinenbau, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/nme.4331 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“