3D corrected XFEM approach and extension to finite deformation theory

verfasst von
Stefan Löhnert, D. S. Mueller-Hoeppe, Peter Wriggers
Abstract

In this paper, the modified or corrected extended finite element method originally presented in Fries (Int. J. Numer. Meth. Engng. 2008; 75:503-532) for the 2D case is extended to 3D including different remedies for the problem that the crack front enrichment functions are linearly dependent in the blending elements. In the context of this extension, we address a number of computational issues of the 3D XFEM, in particular possible quadrature rules for elements with discontinuities. Also, the influence of finite deformation theory for crack simulations in comparison to linear elastic fracture mechanics is investigated. A number of numerical examples demonstrate the behavior of the presented possibilities.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Typ
Artikel
Journal
International Journal for Numerical Methods in Engineering
Band
86
Seiten
431-452
Anzahl der Seiten
22
ISSN
0029-5981
Publikationsdatum
28.10.2010
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mathematik, Ingenieurwesen (insg.), Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1002/nme.3045 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“