Random homogenization analysis in linear elasticity based on analytical bounds and estimates

verfasst von
Juan Ma, Ilker Temizer, Peter Wriggers
Abstract

In this work, random homogenization analysis of heterogeneous materials is addressed in the context of elasticity, where the randomness and correlation of components' properties are fully considered and random effective properties together with their correlation for the two-phase heterogeneous material are then sought. Based on the analytical results of homogenization in linear elasticity, when the randomness of bulk and shear moduli, the volume fraction of each constituent material and correlation among random variables are considered simultaneously, formulas of random mean values and mean square deviations of analytical bounds and estimates are derived from Random Factor Method. Results from the Random Factor Method and the Monte-Carlo Method are compared with each other through numerical examples, and impacts of randomness and correlation of random variables on the random homogenization results are inspected by two methods. Moreover, the correlation coefficients of random effective properties are obtained by the Monte-Carlo Method. The Random Factor Method is found to deliver rapid results with comparable accuracy to the Monte-Carlo approach.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Xidian University
Typ
Artikel
Journal
International Journal of Solids and Structures
Band
48
Seiten
280-291
Anzahl der Seiten
12
ISSN
0020-7683
Publikationsdatum
10.10.2010
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Werkstoffwissenschaften (insg.), Physik der kondensierten Materie, Werkstoffmechanik, Maschinenbau, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1016/j.ijsolstr.2010.10.004 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“